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Abstract

We modify the “Kaplan example” (a six-dimensional nilpotent Lie group which is a Riemannian g.o. space) and we obtain two
pseudo-Riemannian homogeneous spaces with noncompact isotropy group. These examples have the property that all geodesics
are homogeneous up to a set of measure zero. We also show that the (incomplete) geodesic graphs are strongly discontinuous at
the boundary, i.e., the limits along certain curves are always infinite.
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1. Introduction

Homogeneous geodesics on homogeneous Riemannian manifolds were studied for example in [11–13]. Further
references can be found also in [4]. In physics, Penrose limits along null homogeneous geodesics are studied in [7,15].
In [15], it is shown that the Penrose limit of a Lorentzian spacetime along a homogeneous geodesic is a homogeneous
plane wave and the Penrose limit of a reductive homogeneous spacetime along a homogeneous geodesic is a reductive
homogeneous plane wave. Null homogeneous geodesics on Lorentzian homogeneous spaces are also studied in [14].
In mathematics, the first results for homogeneous geodesics on pseudo-Riemannian homogeneous manifolds were
obtained in [1,4,5]. In [4], Lemma 1.2 is proved and the role of the parameter k is illustrated. In [1], the authors study
homogeneous geodesics on three-dimensional Lie groups with Lorentzian metrics. In [5], the pseudo-Riemannian g.o.
spaces with compact isotropy group are studied.

Let M be a pseudo-Riemannian manifold. If there is a connected Lie group G ⊂ I0(M) which acts transitively on
M as a group of isometries, then M is called a homogeneous pseudo-Riemannian manifold. Let p ∈ M be a fixed
point. If we denote by H the isotropy group at p, then M can be identified with the homogeneous space G/H . In
general, there may exist more than one such group G ⊂ I0(M). For any fixed choice M = G/H , G acts effectively
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on G/H from the left. The pseudo-Riemannian metric g on M can be considered as a G-invariant metric on G/H .
The pair (G/H, g) is then called a pseudo-Riemannian homogeneous space.

If the metric g is positive definite, then (G/H, g) is always a reductive homogeneous space in the following sense:
we denote by g and h the Lie algebras of G and H respectively and consider the adjoint representation Ad: H ×g → g
of H on g. There exists a direct sum decomposition (reductive decomposition) of the form g = m + h, where m ⊂ g
is a vector subspace such that Ad(H)(m) ⊂ m. If the metric g is indefinite, the reductive decomposition may not exist
(see for instance [7] for the example of nonreductive pseudo-Riemannian homogeneous space). For a fixed reductive
decomposition g = m + h, there is a natural identification of m ⊂ g = TeG with the tangent space Tp M via the
projection π : G → G/H = M . Using this natural identification and the scalar product gp on Tp M , we obtain a scalar
product 〈 , 〉 on m. This scalar product is obviously Ad(H)-invariant.

The definition of a homogeneous geodesic is well known in the Riemannian case (see, e.g., [12]). In the pseudo-
Riemannian case, the necessary generalized version was given in [4]:

Definition 1.1. Let M = G/H be a reductive homogeneous pseudo-Riemannian space, g = m + h a reductive
decomposition and p the basic point of G/H . The geodesic γ (s) through the point p defined in an open interval J
(where s is an affine parameter) is said to be homogeneous if there exists

(1) a diffeomorphism s = ϕ(t) between the real line and the open interval J ;
(2) a vector X ∈ g such that γ (ϕ(t)) = exp(t X)(p) for all t ∈ (−∞, +∞).

The vector X is then called a geodesic vector.

The basic formula characterizing geodesic vectors in the pseudo-Riemannian case appeared in [7,15], but without a
proof. The correct mathematical formulation with the proof was given in [4]:

Lemma 1.2. Let M = G/H be a reductive homogeneous pseudo-Riemannian space, g = m + h a reductive
decomposition and p the basic point of G/H. Let X ∈ g. Then the curve γ (t) = exp(t X)(p) (the orbit of a one-
parameter group of isometries) is a geodesic curve with respect to some parameter s if and only if

〈[X, Z ]m, Xm〉 = k〈Xm, Z〉 for all Z ∈ m, where k ∈ R is some constant. (1)

Further, if k = 0, then t is an affine parameter for this geodesic. If k 6= 0, then s = e−kt is an affine parameter for the
geodesic. The second case can occur only if the curve γ (t) is a null curve in a (properly) pseudo-Riemannian space.

Definition 1.3. A pseudo-Riemannian homogeneous space (G/H, g) is called a g.o. space if every geodesic of
(G/H, g) is homogeneous. Here “g.o.” means “geodesics are orbits”.

It is well known that all naturally reductive homogeneous spaces are g.o. spaces. Some decades ago, it was generally
believed that also every g.o. space is naturally reductive. The first counter-example of a g.o. space which is in no way
naturally reductive comes from Kaplan [9]. This is a six-dimensional Riemannian nilmanifold with a two-dimensional
center, one of the so-called “generalized Heisenberg groups”. The extensive study of (Riemannian) g.o. spaces started
just with Kaplan’s paper. In the present paper, we are going to consider indefinite metrics on the same six-dimensional
manifold.

Our technique used for the characterization of g.o. spaces and g.o. manifolds is based on the concept of “geodesic
graph”. The original idea (not using any explicit name) comes from Szenthe [16].

Definition 1.4. Let (G/H, g) be a reductive g.o. space and g = m + h an Ad(H)-invariant decomposition of the Lie
algebra g. A geodesic graph is an Ad(H)-equivariant map η: m → h which is rational on an open dense subset U of
m and such that X + η(X) is a geodesic vector for each X ∈ m.

On every reductive g.o. space (G/H, g), there exists at least one geodesic graph. The construction of a canonical
geodesic graph and general geodesic graphs (on open dense subsets) through rational maps is described in detail in [3,
10]. On the subset U ⊂ m, with respect to a basis {E1, . . . , En} of m and a basis {F1, . . . , Fh} of h, the components
ηi of a geodesic graph are always rational functions in the form ηi = Pi/P , where Pi and P are homogeneous
polynomials (of the coordinates on Tp(M)) and deg(Pj ) = deg(P) + 1. For the vectors X ∈ m \ U , the map η must
be constructed part by part using again some rational maps and the geodesic graph may be discontinuous on some
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subset of V = m \ U . For the examples of geodesic graphs of various degrees we refer the reader to [2,3,6,10]. The
systematic description of contemporary results for Riemannian g.o. manifolds was given in [6].

The study of pseudo-Riemannian g.o. spaces started with the paper [5]. In this paper, the present authors considered
five-dimensional, six-dimensional and seven-dimensional manifolds which were described with Riemannian metrics
in [6,8,12] and geodesic graphs of these Riemannian g.o. manifolds were described in [6,10] (Kaplan’s example was
one of them). They modified the metrics and obtained pseudo-Riemannian homogeneous spaces with compact isotropy
group. They showed that these spaces are g.o. spaces and they described the discontinuities of geodesic graphs. At all
points of discontinuity, there are different limits along different curves, but these limits are all finite.

In the present paper we modify the Riemannian metrics on the six-dimensional Kaplan’s g.o. manifold and we
obtain homogeneous pseudo-Riemannian manifolds with noncompact isotropy group. We describe the (incomplete)
geodesic graphs on open dense subset U of m, but we show that these pseudo-Riemannian homogeneous manifolds
are not g.o. manifolds. We also show that, at points X̊ ∈ m \ U , the limits of geodesic graph for X ∈ U approaching
to X̊ are infinite.

2. Six-dimensional nilpotent example

We are going to study now the six-dimensional example which is a pseudo-Riemannian modification of the
Riemannian g.o. space of A. Kaplan. This construction was proposed by P. Meessen in his private correspondence. In
this paper, we systematically treat his proposals and solve some of the open questions which he put. In particular, we
show the example of a homogeneous space which is not g.o., but all null geodesics are homogeneous.

We describe two pseudo-Riemannian metrics with different signatures on the same manifold. We will treat them
simultaneously, because a lot of computations at the Lie algebra level coincide.

2.1. Basic definitions

Let us consider the six-dimensional vector space n with the pseudo-orthonormal basis {E1, . . . , E4, Z1, Z2} with
the signature (−1, −1, 1, 1, ε, 1), where ε = ±1.

Let us define the Lie bracket on n by the relations

[E1, E2] = 0, [E2, E3] = Z2,

[E1, E3] = Z1, [E2, E4] = −Z1,

[E1, E4] = Z2, [E3, E4] = 0, (2)
[Z1, Ei ] = [Z2, Ei ] = [Z1, Z2] = 0 for i = 1, . . . , 4. (3)

We denote by N the unique connected and simply connected Lie group whose Lie algebra is n. Further, we denote by
Ai j (for 1 ≤ i < j ≤ 4) and B12 the endomorphisms of n, with the corresponding action given by the formulas

Ai j (Ek) = δik E j − δ jk Ei for k = 1, . . . , 4
B12(Zk) = δ1k Z2 − δ2k Z1

and we denote by Āi j (for 1 ≤ i < j ≤ 4) the endomorphisms of n, with the corresponding action given by the
formulas

Āi j (Ek) = δik E j + δ jk Ei for k = 1, . . . , 4.

Further, we define

A = A34 − A12, B = Ā13 + Ā24, C = Ā14 − Ā23,

Ã = A34 + A12 + 2B12. (4)

The Lie bracket of the operators A, B, C satisfy the relations

[A, B] = 2C, [B, C] = −2A, [C, A] = 2B (5)

and the operator Ã commutes with A, B, C . We obtain the isomorphisms h = span(A, B, C, Ã) ' so(1, 2) + so(2)

and h′
= span(A, B, C) ' so(1, 2). We choose H = SO(1, 2) × SO(2) and H ′

= SO(1, 2). For ε = 1, it is easy to
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verify that the algebra h acts on n by derivations and the scalar product on n is invariant with respect to this action.
Hence, the manifold N can be expressed as homogeneous space G/H , where G = N o H . For ε = −1, only the
smaller algebra h′ acts invariantly by derivations and hence we can write N = G ′/H ′, where G ′

= N o H ′.

2.2. Geodesic graph on U ⊂ m

We are going to construct the canonical geodesic graph. In this case, the symbol ξ is used instead of η. We write
a general vector X ∈ m in the form X = x1 E1 + · · · + x4 E4 + z1 Z1 + z2 Z2 and the vector ξ(X) ∈ h in the
form ξ(X) = ξ1 A + ξ2 B + ξ3C + ξ4 Ã. Hence we can identify every vector X ∈ m with the arithmetic vector
(x1, . . . , x4, z1, z2) of components with respect to the basis of m and every vector ξ(X) ∈ h with the arithmetic vector
(ξ1, . . . , ξ4) of components with respect to the basis of h. We use the Lemma 1.2, where we write the vector X +ξ(X)

instead of the intended geodesic vector X . We obtain a system of equations for ξk depending on xi and z j . For ε = 1,
the matrix A1 and the right-hand side vector b1 of this system are

A1 =


x2 x3 x4 −x2

−x1 x4 −x3 x1
x4 −x1 x2 x4

−x3 −x2 −x1 −x3
0 0 0 2z2
0 0 0 −2z1

 , b1 =


x3z1 + x4z2 − kx1

−x4z1 + x3z2 − kx2
−x1z1 − x2z2 + kx3
x2z1 − x1z2 + kx4

kz1
kz2

 . (6)

For ε = −1 and ξ(X) ∈ h′, we write ξ(X) = ξ1 A + ξ2 B + ξ3C and we identify the vector ξ(X) with the
arithmetic vector (ξ1, ξ2, ξ3). The matrix A−1 and the right-hand side vector b−1 of the system of equations given
by the Lemma 1.2 are

A−1 =


x2 x3 x4

−x1 x4 −x3
x4 −x1 x2

−x3 −x2 −x1
0 0 0
0 0 0

 , b−1 =


−x3z1 + x4z2 − kx1
x4z1 + x3z2 − kx2
x1z1 − x2z2 + kx3

−x2z1 − x1z2 + kx4
−kz1
kz2

 . (7)

In both cases ε = ±1, if z1 = z2 = 0 or x1 = x2 = x3 = x4 = 0, we can put k = 0 and ξ(X) = 0. In this and the
next subsection, if not stated otherwise, we suppose that at least one of the xi and at least one of the z j are nonzero.

For ε = 1, we see immediately (from the fifth and sixth row) that ξ4 = 0 and k = 0. For ε = −1 we see also
that k = 0. Hence, in both cases ε = ±1, we can restrict ourselves on the subalgebra h′

= span(A, B, C) and the
corresponding restricted system given by the matrix and the right-hand side vector

A′
=


x2 x3 x4

−x1 x4 −x3
x4 −x1 x2

−x3 −x2 −x1

 , b′
=


εx3z1 + x4z2

−εx4z1 + x3z2
−εx1z1 − x2z2
εx2z1 − x1z2

 . (8)

The rank of this system is equal to 3 (in the generic case) and by Cramer’s rule we obtain the components of the vector
ξ(X) in the form

ξ1 =
2εz1(x1x4 + x2x3) − 2z2(x1x3 − x2x4)

−‖x‖2 ,

ξ2 =
εz1(x2

1 − x2
2 − x2

3 + x2
4) + 2z2(x1x2 − x3x4)

−‖x‖2 ,

ξ3 =
−2εz1(x1x2 + x3x4) + z2(x2

1 − x2
2 + x2

3 − x2
4)

−‖x‖2 . (9)

Here we put ‖x‖
2

= x2
3 + x2

4 − x2
1 − x2

2 . The above formulas describe the geodesic graph on U = {X ∈ m; ‖x‖
2

6= 0}.
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Remark. In accordance with the general conjecture from [3], ‖x‖
2 is an invariant with respect to the transformation

group Ad(H ′).
Further, we put V = m\U = {X ∈ m; ‖x‖

2
= 0}. In the following, we are going to extend the geodesic graph also

to some part of V . We remark already here that, in both cases ε = ±1, the null-cone N has a nonempty intersection
with both U and V .

2.3. Properties of the set V = m \ U

Theorem 2.1. The subset V = m \ U of m can be decomposed as V = V0 + V1, where V0 is an open dense subset
of V . The geodesic graph can be defined on V1 and it cannot be defined on V0. In particular, because V0 is nonempty,
G/H is not a g.o. space (for each ε = ±1).

Proof. A vector X ∈ m belongs to V if and only if x2
1 + x2

2 − x2
3 − x2

4 = 0. For these vectors, the formulas (9) do
not make sense. We have shown in the previous section that for z1 = z2 = 0, or x1 = x2 = x3 = x4 = 0, a geodesic
graph can be defined by ξ(X) = 0. Hence we consider now the opposite case, where X =

∑
xi Ei +

∑
z j Z j ∈ V

and both summands are nonzero.
Clearly, every subdeterminant of rank 3 of the matrix A′ is zero (because it is a multiple of ‖x‖

2) and rank(A′) ≤ 2.
Hence, according to the Frobenius criterion of compatibility, the system (8) can be solvable only if all subdeterminants
of rank 3 of the extended matrix Ã = (A′

|b′) are zero. The significant factors of these subdeterminants are the
numerators in the formulas (9). If some of these numerators is nonzero, we obtain from our compatibility conditions
that x1 = x2 = x3 = x4 = 0, which is not the case.

On the other hand, the numerators in the formulas (9) are all zero if and only if:

(a) ε
z1
z2

=
x1x3−x2x4
x1x4+x2x3

=
2(x3x4−x1x2)

x2
1−x2

2−x2
3+x2

4
=

x2
1−x2

2+x2
3−x2

4
2(x1x2+x3x4)

for z2 6= 0,

(b) ε
z2
z1

=
x1x4+x2x3
x1x3−x2x4

=
x2

1−x2
2−x2

3+x2
4

2(x3x4−x1x2)
=

2(x1x2+x3x4)

x2
1−x2

2+x2
3−x2

4
for z1 6= 0.

We check easily that the second and the third equality (in both cases) are consequences of the relation ‖x‖
2

= 0.
Hence, all numerators in the formulas (9) are zero if and only if the relation

εz1(x1x4 + x2x3) − z2(x1x3 − x2x4) = 0 (10)

is valid. For the future convenience, we denote by k2 and k3 the polynomials

k2 = x1x4 + x2x3, k3 = x1x3 − x2x4. (11)

Using Cramer’s rule and the condition ‖x‖
2

= 0 we see that the polynomials k2 and k3 cannot be both equal to zero.
For a vector X ∈ m such that the relation (10) does not hold, the system (8) (and also the system (6), or (7),

respectively) is unsolvable because it does not satisfy the Frobenius criterion of compatibility. Let us define the subsets
V1 and V0 of V by the relations

V1 = {X ∈ m; ‖x‖
2

= 0, εz1(x1x4 + x2x3) − z2(x1x3 − x2x4) = 0},

V0 = {X ∈ m; ‖x‖
2

= 0, εz1(x1x4 + x2x3) − z2(x1x3 − x2x4) 6= 0}. (12)

We see that V1 is just the subset of V for which the geodesic graph can be defined (including the case z1 = z2 = 0 or
x1 = x2 = x3 = x4 = 0). For vectors from V0, geodesic graph cannot be defined. The set V0 is obviously open and
dense in V . This proves that G/H is not a g.o. space in any case ε = ±1. �

In [14], Meessen introduced the definition of a n.g.o. space: it is a pseudo-Riemannian homogeneous space, whose
any null geodesic is homogeneous. In particular, if the given space is not g.o., he calls it a proper n.g.o. space. Our
Theorem 2.1 and the first part of the following Theorem 2.2 show, that our example for ε = 1 is a proper n.g.o. space.
The geodesic graph can be defined on an open dense subset which contains the null-cone. Geodesic graph is nonlinear
and k is zero on the null-cone.

Further, because the geodesic graph on our n.g.o. space is nonlinear on the null-cone, null geodesics are not
canonically homogeneous and according to [14], G/H does not admit a T1 ⊕ T3-structure. Hence, our pseudo-
Riemannian n.g.o. space has the properties required in the open question stated in [14].
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Theorem 2.2. Let us denote by N the null-cone in m. For ε = 1, it holds N ∩ V = N ∩ V1. In particular, all null
geodesics are homogeneous. For ε = −1, the set N ∩ V0 is nonempty and there are null geodesics which are not
homogeneous.

Proof. For ε = 1, the vector X ∈ m is null, if ‖X‖
2

= −x2
1 − x2

2 + x2
3 + x2

4 + z2
1 + z2

2 = 0. Hence, a null vector X is
in U if and only if z2

1 + z2
2 6= 0. A null vector X is in V if and only if z1 = z2 = 0, but in this case we have ξ(X) = 0.

We see that N ∩ V = N ∩ V1. In other words, for all null vectors, a geodesic graph is defined.
For ε = −1, the vector X ∈ m is null, if ‖X‖

2
= −x2

1 − x2
2 + x2

3 + x2
4 − z2

1 + z2
2 = 0. Hence, a null vector X is in

U if and only if z1 6= ±z2. It is in V if and only if z1 = ±z2. For example, a vector X = (1, 0, 1, 0, 1, 1) ∈ m belongs
to N ∩ V0. �

Let us now construct a geodesic graph on the subset V1. Here ‖x‖
2

= 0 and the relation (10) is valid. The system
(8), after omitting unnecessary rows, becomes

A′
=

(
x2 x3 x4

−x1 x4 −x3

)
, b′

=


z2

k2
x1(x2

3 + x2
4)

z2

k2
x2(x2

3 + x2
4)

 =


εz1

k3
x1(x2

3 + x2
4)

εz1

k3
x2(x2

3 + x2
4)

 . (13)

Here the two right-hand sides correspond to the choice whether we express z1 or z2 from the Eq. (10). According to
the above remark, at any point of V1, at least one of these two expressions makes sense. To construct the canonical
geodesic graph, we define the subalgebras qX of the isotropy algebra h′ by the formula

qX = {A ∈ h′
| [A, X ] = 0} (14)

(see for example [10] or [3] for the details of the construction of the canonical geodesic graph when the algebra qX is
nontrivial). We have dim qX = 1 (in h′) and the components qk of the generator Q X with respect to the basis {A, B, C}

are

q1 = x2
3 + x2

4 ,

q2 = x1x4 − x2x3,

q3 = −x1x3 − x2x4. (15)

We use the system of equations corresponding to (13) and the condition ξ(X) ⊥ Q X (with respect to some invariant
scalar product on h′). By Cramer’s rule we obtain components of the canonical geodesic graph in the form

ξ1 = 0,

ξ2 =
z2

k2
(x1x3 + x2x4) =

εz1

k3
(x1x3 + x2x4),

ξ3 =
z2

k2
(x1x4 − x2x3) =

εz1

k3
(x1x4 − x2x3). (16)

Again, at any point of V1, at least one of the expressions for the solution makes sense. If both expressions make sense,
they are equal due to the Eq. (10).

2.4. Limits of ξ(X) for X ∈ U approaching a value X̊ ∈ V

Theorem 2.3. For any vector X̊ ∈ V , there is a curve γ (t) with the values in m and defined on an interval 〈0, δ) such
that γ (0) = X̊ , γ (t) ∈ U for t ∈ (0, δ) and the limit of ξ1(γ (t)) is infinite for t → 0+.

Proof. Let us consider the vector X̊ = (x̊1, x̊2, x̊3, x̊4, z̊1, z̊2) which lies in V and not all x̊i are equal to zero. Let us
consider the curves in m

γ1 = (x̊1 + t2, x̊2, x̊3, x̊4, z̊1 + t, z̊2),

γ2 = (x̊1 + t2, x̊2, x̊3, x̊4, z̊1, z̊2 + t). (17)



2020 Z. Dušek, O. Kowalski / Journal of Geometry and Physics 57 (2007) 2014–2023

Now we calculate

ξ1(γ1(t)) =
2ε(z̊1 + t)((x̊1 + t2)x̊4 + x̊2 x̊3) + 2z̊2(−(x̊1 + t2)x̊3 + x̊2 x̊4)

(x̊1 + t2)2 + x̊2
2 − x̊2

3 − x̊2
4

=
2ε(z̊1 + t)(x̊4t2

+ x̊1 x̊4 + x̊2 x̊3) + 2z̊2(−x̊3t2
− x̊1 x̊3 + x̊2 x̊4)

t4 + 2x̊1t2 + x̊2
1 + x̊2

2 − x̊2
3 − x̊2

4

=
2εt3 x̊4 + 2t2(εz̊1 x̊4 − z̊2 x̊3) + 2εt (x̊1 x̊4 + x̊2 x̊3) + 2(εz̊1(x̊1 x̊4 + x̊2 x̊3) + z̊2(−x̊1 x̊3 + x̊2 x̊4))

t4 + 2x̊1t2 . (18)

In the same way we obtain

ξ1(γ2(t)) =
2εz̊1((x̊1 + t2)x̊4 + x̊2 x̊3) + 2(z̊2 + t)(−(x̊1 + t2)x̊3 + x̊2 x̊4)

(x̊1 + t2)2 + x̊2
2 − x̊2

3 − x̊2
4

=
2εz̊1(x̊4t2

+ x̊1 x̊4 + x̊2 x̊3) + 2(z̊2 + t)(−x̊3t2
− x̊1 x̊3 + x̊2 x̊4)

t4 + 2x̊1t2 + x̊2
1 + x̊2

2 − x̊2
3 − x̊2

4

=
−2t3 x̊3 + 2t2(εz̊1 x̊4 − z̊2 x̊3) + 2t (−x̊1 x̊3 + x̊2 x̊4) + 2(εz̊1(x̊1 x̊4 + x̊2 x̊3) + z̊2(−x̊1 x̊3 + x̊2 x̊4))

t4 + 2x̊1t2 . (19)

Let us notice that the coefficients of t1 in the numerators of the last fractions in (18) and (19) are the polynomials
k̊2, k̊3 defined by the analogs of formulas (11). We denote the coefficient of t0 (which is the same in the numerators
of (18) and (19)) by k̊1.

Now, if k̊1 6= 0 (which is equivalent to X̊ ∈ V0), we have limt→0 ξ1(γ1(t)) = sgn(k̊1/x̊1) · ∞ and
limt→0 ξ1(γ2(t)) = sgn(k̊1/x̊1) · ∞.

If k̊1 = 0 and either k̊2 6= 0 or k̊3 6= 0, we have either limt→0+ ξ1(γ1(t)) = sgn(εk̊2/x̊1)·∞ or limt→0+ ξ1(γ2(t)) =

sgn(−k̊3/x̊1) · ∞. From the previous section we know that we cannot have k̊2 = k̊3 = 0 unless all x̊i are zero.
Thus, with the exception of for this special situation, we have proved the last part of Theorem 2.3. This includes

also the case z1 = z2 = 0.
It remains to investigate the case x̊1 = x̊2 = x̊3 = x̊4 = 0. Let us consider the curve

γ (t) = (
√

t + t2, 0,
√

t − t2, 0, z̊1, z̊2 + 2t 4√t), (20)

for t ≥ 0. We calculate

ξ1(γ (t)) =
2εz̊1 · 0 − 2(z̊2 + 2t 4√t)(

√
t + t2)(

√
t − t2)

(
√

t + t2)2 − (
√

t − t2)2

=
4t21/4

+ 2z̊2t4
− 4t9/4

− 2z̊2t
4t5/2 (21)

and we see that limt→0+ ξ1(γ (t)) = −∞. In particular, this limit is infinite at the origin o ∈ m. �

2.5. Limits along curves in the null-cone

In Section 2.4 we have investigated the limits of ξ1 along curves in U approaching a vector X̊ ∈ V . In general, the
vector X̊ was not a null vector and the curves were also arbitrary. The idea of P. Meessen (who gave us just one special
example) was to find an infinite limit of ξ(X) for the null vector X along a curve which belongs to the intersection
N ∩ U . We are going to do such a construction in general now.

Theorem 2.4. For any vector X̊ ∈ N ∩ V , there is a curve γ (t) with the values in m and defined on an interval 〈0, δ)

such that γ (0) = X̊ , γ (t) ∈ N ∩ U for t ∈ (0, δ) and the limit of ξ1(γ (t)) is infinite for t → 0+.

Proof. Because the null-cone N depends on the metric (see Theorem 2.2), we construct the curves for each case
ε = ±1 separately.
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Case ε = 1:
Let the vector X̊ = (x̊1, x̊2, x̊3, x̊4, 0, 0) be null and lying in V . Let us consider the curves

γ1(t) =

(
x̊1 + at2, x̊2 + bt2, x̊3 − ct2, x̊4 − dt2, 0, t

√
2(ax̊1 + bx̊2 + cx̊3 + dx̊4)

)
γ2(t) =

(
x̊1 + at2, x̊2 + bt2, x̊3 − ct2, x̊4 − dt2, t

√
2(ax̊1 + bx̊2 + cx̊3 + dx̊4), 0

)
, (22)

where a, b, c, d are the parameters such that a = cos(α), b = sin(α), c = cos(β), d = sin(β) for some α, β. In this
way we have a2

+ b2
− c2

− d2
= 0 and both these curves lie in N . We calculate

ξ1(γ1(t))

=
2t

√
2(ax̊1 + bx̊2 + cx̊3 + dx̊4)

(
−(x̊1 + at2)(x̊3 − ct2) + (x̊2 + bt2)(x̊4 − dt2)

)
(x̊1 + at2)2 + (x̊2 + bt2)2 − (x̊3 − ct2)2 − (x̊4 − dt2)2

=
2t

√
2(ax̊1 + bx̊2 + cx̊3 + dx̊4)

(
−x̊1 x̊3 + x̊2 x̊4 + t2(cx̊1 − dx̊2 − ax̊3 + bx̊4) + t4(ac − bd)

)
x̊2

1 + x̊2
2 − x̊2

3 − x̊2
4 + 2t2(ax̊1 + bx̊2 + cx̊3 + dx̊4) + t4(a2 + b2 − c2 − d2)

=

√
2(ax̊1 + bx̊2 + cx̊3 + dx̊4)

(
(−x̊1 x̊3 + x̊2 x̊4) + t2(cx̊1 − dx̊2 − ax̊3 + bx̊4) + t4(ad − bd)

)
t (ax̊1 + bx̊2 + cx̊3 + dx̊4)

. (23)

If not all x̊i are equal to zero, we can choose the parameters α, β such that ax̊1 + bx̊2 + cx̊3 + dx̊4 6= 0. Then, if
k̊3 6= 0, the limit of ξ1(γ (t)) for t → 0 is infinite. In the same way we obtain infinite limit for the curve γ2 and for
k̊2 6= 0. Again, we cannot have k̊2 = k̊3 = 0.

In the case x̊1 = x̊2 = x̊3 = x̊4 = 0, the only interesting point is the origin (other points do not lie in N ). We make
a modification of the above curve by choosing x̊2 = x̊4 = b = d = 0, a = c = 1 and by putting x̊1 = x̊3 =

√
t . We

obtain the curve γ (t) (for t ≥ 0) described (for general z̊1, z̊2) by the formula (20) in Section 2.4. For z̊1 = z̊2 = 0
this curve lies in N and the limit of ξ1(γ (t)) for t → 0+ is also infinite.
Case ε = −1:

Let the vector X̊ = (x̊1, x̊2, x̊3, x̊4, z̊1, z̊2) be in N ∩ V , let z̊2 = ε′ z̊1 (where ε′
= ±1) and let us consider the curve

γ (t) = (x̊1 − 2az̊1t, x̊2 − 2bz̊1t, x̊3 + 2cz̊1t, x̊4 + 2dz̊1t,

z̊1 + (ax̊1 + bx̊2 + cx̊3 + dx̊4)t, ε′ z̊1 − ε′(ax̊1 + bx̊2 + cx̊3 + dx̊4)t
)
, (24)

where the parameters a, b, c, d are as in the case ε = 1. Again, a2
+ b2

− c2
− d2

= 0 and the curve lies in N . We
shall calculate the limit for t → 0+ of the function

ξ1(γ (t)) =
P(t)
Q(t)

, (25)

where
P(t) = −2 (z̊1 + (ax̊1 + bx̊2 + cx̊3 + dx̊4)t) · ((x̊1 − 2az̊1t)(x̊4 + 2dz̊1t) + (x̊2 − 2bz̊1t)(x̊3 + 2cz̊1t))

+ 2
(
ε′ z̊1 − ε′(ax̊1 + bx̊2 + cx̊3 + dx̊4)t

)
· (−(x̊1 − 2az̊1t)(x̊3 + 2cz̊1t) + (x̊2 − 2bz̊1t)(x̊4 + 2dz̊1t))

= −2 (z̊1 + (ax̊1 + bx̊2 + cx̊3 + dx̊4)t) (x̊1 x̊4 + x̊2 x̊3 + O(t))
+ 2

(
ε′ z̊1 − ε′(ax̊1 + bx̊2 + cx̊3 + dx̊4)t

)
(−x̊1 x̊3 + x̊2 x̊4 + O(t)) ,

Q(t) = (x̊1 − 2az̊1t)2
+ (x̊2 − 2bz̊1t)2

− (x̊3 + 2cz̊1t)2
− (x̊4 + 2dz̊1t)2

= 4z̊2
1(a

2
+ b2

− c2
− d2)t2

− 4z̊1(ax̊1 + bx̊2 + cx̊3 + dx̊4)t + x̊2
1 + x̊2

2 − x̊2
3 − x̊2

4
= −4z̊1(ax̊1 + bx̊2 + cx̊3 + dx̊4)t. (26)

We see easily that the constant term in P(t) is k̊1 = −z̊1(x̊1 x̊4 + x̊2 x̊3) − ε′ z̊1(x̊1 x̊3 − x̊2 x̊4). Again, we can always
choose the parameters a, b, c, d such that ax̊1 + bx̊2 + cx̊3 + dx̊4 6= 0. Hence, Q(t) is a nonzero multiple of t and the
limit of ξ1(γ (t)) for t → 0+ is infinite if k̊1 6= 0. This is the case X̊ ∈ N ∩ V0.

Now, let us describe the set N ∩ V1. We first suppose not all xi equal to zero and not all z j equal to zero. Here the
three equations

−x2
1 − x2

2 + x2
3 + x2

4 − z2
1 + z2

2 = 0,
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−x2
1 − x2

2 + x2
3 + x2

4 = 0,

z1(x1x4 + x2x3) + z2(x1x3 − x2x4) = 0 (27)

must be satisfied. From the first two equations we obtain immediately z2 = ε′z1, for ε′
= ±1. Then a longer but

routine calculation shows that the second and the third equation of (27) are equivalent to

x1 = ±

√
2

2
(x4 − ε′x3),

x2 = ±

√
2

2
(x3 + ε′x4). (28)

where either the plus signs (or the minus signs) are valid in both formulas (28).
We will consider the case when ε′

= 1 and both signs in (28) are positive. The other combinations of signs are
treated analogously. Let the vector X̊ ∈ N ∩ V1 have the coordinates

X̊ =

(√
2

2
(x̊4 − x̊3),

√
2

2
(x̊4 + x̊3), x̊3, x̊4, z̊1, z̊1

)
. (29)

We consider the curve γ (t) for t ≥ 0, starting at X̊ (for t = 0) and given by

γ (t) =

(√
2

2
(x̊4 − x̊3) − t, γ2(t), x̊3, x̊4, z̊1, z̊1 + t2

)
, (30)

where γ2(t) =

√
1
2 (x̊4 + x̊3)2 +

√
2(x̊4 − x̊3)t + (2z̊1 − 1)t2 + t4. This expression is the consequence of the

requirement γ (t) ∈ N . We check easily that the curve γ lies in the null-cone N and for t > 0 it lies in U . We
calculate

ξ1(γ (t)) =
P(t)
Q(t)

, (31)

where

P(t) = −2z̊1

((√
2

2
(x̊4 − x̊3) − t

)
x̊4 + γ2(t)x̊3

)

+ 2(z̊1 + t2)

(
−

(√
2

2
(x̊4 − x̊3) − t

)
x̊3 + γ2(t)x̊4

)
= 2x̊3t3

+

(√
2x̊3(x̊3 − x̊4) + 2x̊4γ2(t)

)
t2

+ 2z̊1(x̊3 + x̊4)t +
√

2z̊1(x̊2
3 − x̊2

4) + 2z̊1(x̊4 − x̊3)γ2(t),

Q(t) =

(√
2

2
(x̊4 − x̊3) − t

)2

+ γ2(t)2
− x̊2

3 − x̊2
4 = 2z̊1t2

+ t4. (32)

We obtain

lim
t→0+

ξ1(γ (t)) = lim
t→0+

2x̊3t +

(√
2x̊3(x̊3 − x̊4) + 2x̊4γ2(t)

)
2z̊1 + t2

+ lim
t→0+

2z̊1(x̊3 + x̊4)t +
√

2z̊1(x̊2
3 − x̊2

4) + 2z̊1(x̊4 − x̊3)γ2(t)
2z̊1t2 + t4 . (33)

It is easy to see that the first limit on the right-hand side is finite. By using the l’Hospital’s rule, we easily verify that
the second limit is equal to ∞ for x̊3 > −x̊4 and for x̊3 = −x̊4, x̊3 < 0. For x̊3 < −x̊4 and for x̊3 = −x̊4, x̊3 > 0, we
can consider the curve

γ (t) =

(√
2

2
(x̊4 − x̊3) + t, γ2(t), x̊3, x̊4, z̊1, z̊1 + t2

)
, (34)
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where γ2(t) = −

√
1
2 (x̊4 + x̊3)2 −

√
2(x̊4 − x̊3)t + (2z̊1 − 1)t2 + t4. Again, the limit (analogous to the second limit

in the formula (33)) is equal to ∞.
Now, we consider the case z̊1 = z̊2 = 0 (and not all xi equal to zero). The following curves (the modifications of

the curves given by the formulas (22) in the case ε = 1, where the parameters a, b, c, d are as before) lie in N :

γ1(t) =

(
x̊1 + at2, x̊2 + bt2, x̊3 − ct2, x̊4 − dt2, 0, t

√
2(ax̊1 + bx̊2 + cx̊3 + dx̊4)

)
γ2(t) =

(
x̊1 − at2, x̊2 − bt2, x̊3 + ct2, x̊4 + dt2, t

√
2(ax̊1 + bx̊2 + cx̊3 + dx̊4), 0

)
. (35)

The fact that, for t → 0+, the limit along γ1(t) for k̊3 6= 0, and the limit along γ2(t) for k̊2 6= 0 are infinite, is an easy
modification of the calculations for the case ε = 1 (formulas (22)).

Finally, we describe the situation x̊1 = x̊2 = x̊3 = x̊4 = 0. We modify the curve given by the formula (24) by
choosing b = c = x̊2 = x̊3 = 0, a = d =

1
2 and by putting x̊1 = x̊4 =

√
t . We obtain the curve

γ (t) =

(√
t − z̊1t, 0, 0,

√
t + z̊1t, z̊1 + t3/2, ε′ z̊1 − ε′t3/2

)
(36)

which lies in N and we calculate

ξ1(γ (t)) =
−2(z̊1 + t3/2)(

√
t − z̊1t)(

√
t + z̊1t)

(
√

t − z̊1t)2 − (
√

t + z̊1t)2
=

2z̊2
1t7/2

− 2t5/2
+ 2z̊3

1t2
− 2z̊1t

−4z̊1t3/2 . (37)

It is easy to see that limt→0+ ξ1(γ (t)) = ∞ for z̊1 6= 0.
If, moreover, z̊1 = z̊2 = 0, we can modify this curve by putting z̊1 = t, z̊2 = ε′t and consider the curve

γ (t) =

(√
t − t2, 0, 0,

√
t + t2, t + t3/2, ε′(t − t3/2)

)
. (38)

This curve belong to the null-cone N , it starts at the origin and the limit of ξ1(γ (t)) for t → 0+ is infinite. �
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[6] Z. Dušek, O. Kowalski, S. Nikčević, New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004) 65–78.
[7] J. Figueroa-O’Farrill, P. Meessen, S. Philip, Homogeneity and plane-wave limits, J. High Energy Phys. 05 (2005) 050.
[8] C. Gordon, Homogeneous Riemannian manifolds whose geodesics are orbits, Progr. Nonlinear Differential Equations Appl. 20 (1996)

155–174.
[9] A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983) 35–42.
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